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Perovskite light-emitting diodes (PeLEDs) have been considered
to be the most promising candidate for solid-state lighting and
high-definition full-color display due to their attractive properties
such as tunable emission wavelengths, narrow full width at half
maximum (FWHM), and high photoluminescence quantum yield
(PLQY) [1–3]. The external quantum efficiencies (EQEs) of green-
and red-emitting PeLEDs have exceeded 20%, rocketing toward
the theoretical limit [4,5], but the blue PeLEDs still suffer from
the obstacles of low efficiency and poor operational stability,
which largely overshadows their real applications and industrial-
scale adoption.

Composition engineering, preparing perovskites by adjusting
the atomic ratio of chlorine and bromine, is a convenient and con-
trollable method to prepare blue-emitting perovskites with desired
wavelength and high PLQY [6]. However, the color stability of the
blue PeLEDs under high voltage and long-term operation is still
extremely low, resulting in that the electroluminescence (EL) spec-
trum shifts to the longer wavelength due to the inherent ionic nat-
ure of perovskite, that is, the ion migration-induced phase
separation of mixed halide perovskite [7,8].

Many efforts have been paid to improve the color stability of the
device, including cation composition engineering [9], ligand engi-
neering [10], and interfacial engineering [11]. Among them, the
cation composition engineering strategy, substitution of the origi-
nal A cation (Cs+, CH(NH2)2+ (FA+), CH3NH3

+ (MA+)) in the ABX3 per-
ovskites by other cations with similar radii, is beneficial to form a
stable phase and to manipulate the conduction band of the per-
ovskite layers [12]. As a result, the stability of PeLEDs is improved.
For example, Xing et al. [13] reported that the phase monodisper-
sity and crystallization of quasi-2D perovskite films can be
enhanced by organic cation composition engineering. Jiang et al.
[14] achieved a pure-blue PeLED with stable emission spectra by
tunning the composition Rb and Cs in the A-site to form the Rb-
Cs alloyed perovskites. The organic or inorganic cation composition
engineering presents great potentials for color-stable blue PeLEDs.
Most recently, reporting in Science Bulletin, the research team
led by Haibo Zeng [15] proposed the hydrogen-bonded cation com-
position engineering to prevent the phase separation of CsPb(Br/
Cl)3 mixed halide perovskite and then the color-stable sky-blue
PeLEDs were realized (Fig. 1). Simple injection of guanidine (GA)-
oleate or formamidine (FA)-oleate together with Cs-oleate into
PbX2 precursor during the synthesis yielded doping of GA- or FA-
doped into the A-site of CsPb(Br/Cl)3 perovskite and partly replaced
the Cs+, as a result, the N–H� � �X H-bonds between –NH2 and Br–/Cl–

strengthened, and thereby increased the ion-migration barrier and
effectively suppressed ion migration (Fig. 1a). This method reduces
the ion migration caused by the weak interaction between Cs+ and
X– of the [PbX6]4� octahedron in CsPb(Br/Cl)3 mixed halide per-
ovskite and shows numerous positive effects on the optical proper-
ties and stability.

Optical properties after GA or FA doping were investigated. The
positive effect of N–H� � �X interaction by A-site cation doping was
proved by our group [4] which obtained PLQY of 93.3% and EQEmax

of 23.4% after GA doping in FAPbBr3. In Zeng group’s work [15],
PLQY increased nearly 200% and photoluminescence (PL) lifetime
of GA- or FA-doped CsPb(Br/Cl)3 increased compared to the non-
doped counterpart. This result reveals that non-radiative channels
and defects were suppressed after doping. GA or FA doping into
CsPb(Br/Cl)3 also decreased the loss of PL and PL shift under exter-
nal electric field. These results mean that the doping enhanced the
structure and color stability.

The authors further confirmed the mechanism of N–H� � �X inter-
action for inhibiting the color shift of the device from the materials
and device perspectives. From the materials perspective, the
authors engaged in the Fourier transform infrared spectroscopy
(FTIR) measurement to verify the existence of the doping group,
and in which C@N vibrational spectra were observed and N–H
stretching vibration peak was broadened and shifted, revealing
the strong interaction between the amine-group and the halogen
anion (N–H� � �X interaction).

The ion migration is the immediate reason that causes a color-
shift of mixed halide perovskite. Density functional theory (DFT)
and climbing image nudged elastic band (CI-NEB) calculation were
used to measure the ion migration barrier energy. The authors cal-
culated which anion was the major kind of migration, and it
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Fig. 1. (Color online) Hydrogen-bonded cation composition engineered color-stable blue PeLEDs. (a) N–H� � �X doping to inhibit ion migration of CsPbBrxCl3-x QDs. (b)
Demonstration of the energy barrier for ionic migration influenced by N–H� � �X interaction. (c) Schematic illustration of EL stability enhancement under external electric
fields. (d) The color coordinates of blue PeLEDs without H-bonds. (e) The color coordinates of blue PeLEDs with FA doping. (f) The color coordinates of blue PeLEDs with GA
doping [15]. Copyright � 2021, Elsevier B. V.
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resulted that the migration barrier energy of Br– is calculated to
be 0.58 eV which is lower than that of Cl– (0.7 eV) because the
bonding energy of Pb–Br is weaker than that of Pb–Cl. The main
migration element is Br–, so the migration barrier was calculated
on CsPbBr3 and GA- or FA-doped CsPbBr3. The maximum barrier
for migration was confirmed to be 0.58 eV in CsPbBr3, 0.67 eV
in FA-doped CsPbBr3, and 0.85 eV in GA-doped CsPbBr3. These
results indicate that N–H� � �X interaction efficiently inhibits halide
migration. Additionally, ion conduction activation energy (Ea) was
experimentally extracted by measuring the temperature-depen-
dent conductivity. Ea of CsPb(Br/Cl)3 was 0.42 eV, while the
increased Ea of 0.49 and 0.52 eV for GA-doped CsPb(Br/Cl)3 and
FA-doped CsPb(Br/Cl)3 were confirmed, which signified that N–
H� � �X interaction could suppress the ion migration effectively
(Fig. 1b).

From the device perspective, as the external bias voltage is
increased, the weak van der Waals interaction between the Cs+

and X– permits ion migration in the non-doped perovskite layer.
As a result, a bromide-rich phase with narrow bandgap appears,
and the emission spectrum redshifts with continuous operation
of the device. Nevertheless, by introducing the cations with
amine-groups into the perovskites, the strong H-bond binding
restricts the ion migration and further stabilizes the bandgap and
emission spectrum (Fig. 1c). As a benefit of the low ion migration
rate, PeLEDs that use GA- or FA-doped CsPb(Br/Cl)3 perovskite have
excellent color stability (Fig. 1d–f). For blue PeLEDs without H-
bonds, the EL spectrum red-shifted 15 nm from 487 to 502 nm
as operating voltage was increased from 3 to 7 V. However, the
introduction of the H-bond into the perovskite layer yielded a con-
stant of the EL spectra at 490.5 and 492.5 nm for GA- and FA-
doped CsPb(Br/Cl)3 based PeLED, respectively.

Overall, this work by Zeng and co-workers [15] provides an
effective and promising strategy to achieve high-efficiency and
color-stable blue PeLEDs. The results not only deepen the under-
standing of the impact of A-site substitution on halide ion diffusion
in perovskites, but also provide a platform for high-performance
and stable perovskite optoelectronic devices. So far, there are few
candidates for the A-site cations, and further work focusing on
the substitution of new cations will be needed to expand the range
of perovskite materials. Moreover, developing multiple cations
doped perovskite materials and understanding the interaction
mechanism of the ions may guide development of ways to signifi-
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cantly increase the optoelectronic properties and stability of the
PeLEDs and to facilitate their commercialization.
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